
September 1990 Report No. STAN-CS-90-1329

PB96-151345

An Interleaving Model for Real Time

by

T. A. Henzinger, Z. Manna, and A. Pnueli

DHCi QTj/.7,r;r TVi:;?r

Department of Computer Science

Stanford University

Stanford, California 94305

19970610100

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 070441W

ranne•w~—*9[°r.TTl,„r^r*..r^!Y!Z1.+ —■ ■■>— _.... «t^iu.*«!«Mi.«~«».twv. c^.~iii».im««<o^thwbufd»n«Um»t»or»f<rot»>«r«ip«rtcrftte
information OBT»Ben» and Mpora. Uli Mftmon

Mductlon»rofct(D704^m).W»>hm9ton, DC 20S03. ^WaUiMMm «idudMO. «uwworn tor reducing thn burotn. to WMhington imdqwrwn Sdnnan. Otroctom* for tnfon

1. AGENCY USE ONLY (U«v* o/ar*;

4. TITLE AND SUBTITLE

2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

Atf INTERLEAVING M0P£L To*- R^At- WAA6

6. AUTHORS)

IttoMAS A- He^H:fiO(3GR. &iWR ANANN/V A:A\k PlOOeLt

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

P£?T. Of CcyWPtnQz. SdesNoe

STANFORD L»M?V£ßSaY

£TA/v)-R>R£>, CA ft3a5"
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

J)AWV

S. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

STfiU-CS-^Ori 2*2-3

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Wcoo28-SiC- ol\\

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT

UflliWted

13. ABSTRACT (Maximum 200 words)

12b. DISTRIBUTION CODE

Abstract. The interleaving model is both adequate and sufficiently abstract
to allow for the practical specification and verification of many properties of
concurrent systems. We incorporate real time into this model by defining the
abstract notion of a real-time transition system as a conservative extension of
traditional transition systems: qualitative fairness requirements are replaced
(and superseded) by quantitative lower-bound and upper-bound real-time

requirements for transitions.
We present proof rules to establish lower and upper real-time bounds

for response properties of real-time transition systems. This proof system
can be used to verify bounded-invariance and bounded-response properties,
such as timely termination of shared-variables multi-process systems, whose
semantics is defined in terms of real-time transition systems.

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES
36

16. PRICE CODE

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500
Standard Form 298 (Rev. 2-89)
PrwriMd bv ANSI Std Z39-'8

An Interleaving Model for Real Time1'2

Thomas A. Henzinger
Department of Computer Science

Stanford University

Zohar Manna
Department of Computer Science

Stanford University
and

Department of Applied Mathematics
The Weizmann Institute of Science

Amir Pnueli
Department of Applied Mathematics
The Weizmann Institute of Science

July 11, 1990

Abstract. The interleaving model is both adequate and sufficiently abstract
to allow for the practical specification and verification of many properties of
concurrent systems. We incorporate real time into this model by defining the
abstract notion of a real-time transition system as a conservative extension of
traditional transition systems: qualitative fairness requirements are replaced
(and superseded) by quantitative lower-bound and upper-bound real-time
requirements for transitions.

We present proof rules to establish lower and upper real-time bounds
for response properties of real-time transition systems. This proof system
can be used to verify bounded-invariance and bounded-response properties,
such as timely termination of shared-variables multi-process systems, whose
semantics is defined in terms of real-time transition systems.

'This research was supported in part by an IBM graduate fellowship, by the National
Science Foundation grants CCR-89-11512 and CCR-89-13641, by the Defense Advanced
Research Projects Agency under contract N00039-84-C-0211, by the United States Air
Force Office of Scientific Research under contract AFOSR-90-0057, and by the European
Community ESPRIT Basic Research Action project 3096 (SPEC).

2 An abbreviated version of this paper appears in the proceedings of the 5th Jerusalem
Conference on Information Technology (1990).

1 Introduction

In order to develop and apply a formal methodology for the specification
and verification of a class of systems, the members of the class have to be
modeled by mathematical objects. Such a model should be both adequate,
in that it distinguishes between systems whose behaviors differ in one of
the aspects under consideration, and abstract, in that it omits unnecessary
detail by identifying systems without such disagreements.

We study the class of reactive systems, which maintain an ongoing in-
teraction with their environment. One well-established approach to the
modeling of reactive systems uses the paradigm of interleaving to represent
concurrent activity. Under this choice, the linear semantics of a system is
the set of all possible behaviors, where each behavior is a (possibly infinite)
sequence of states generated by performing the basic actions (transitions) of
the system, one at a time. Concurrent actions are linearized; they may be
performed in either order.

Consider, for example, the following concurrent system consisting of a
resource allocator Pi and a client process P2:

wait wait

requested-
grant

released^ »"«»»-/ \request
redeem

release

wait

Suppose that the client P2 requests the resource (say, by setting a shared
variable). Then P2 waits until the resource is granted by Pi, at which point
P2 goes ahead and uses the resource. When it is finally released by P2, the
allocator Pi retakes control of the resource and waits for another request.

If we consider grant, redeem, request, use, release, and wait to be atomic
actions, some of the possible behaviors of this system are:

request grant use release redeem ...
request wait grant use release redeem ...
request wait wait grant use release redeem ...

To rule out shuffles of actions that are unfair to a particular transition,
by preferring parallel transitions ad infinitum, the admissible behaviors of a
system are constrained by fairness conditions. These conditions put, how-
ever, no restrictions on the relative speed of parallel processes within the
system; they ensure only that every process will proceed "eventually."

In our resource allocation example, an appropriate fairness condition
guarantees that whenever the resource is requested, it will eventually be
granted; the fairness condition restricts the set of possible behaviors of the
system by ruling out the behavior

request wait wait wait wait wait...,

in which the client process waits forever for the resource to be granted.
If the grain of atomicity of actions is chosen fine enough, this simple linear

model turns out to be both adequate and convenient for the study of many
qualitative properties of reactive systems — in particular the correctness of
concurrent programs, independent of whether they are implemented in mul-
tiprogramming or multiprocessing environments. There are well-understood
formal languages to specify the correctness properties of such systems, like
linear temporal logic, as well as deductive and automatic methods for their
verification ([Pn77], [OL82], [LP84], [MP89]).

Observe that the described model is abstract with respect to time; it
identifies systems that admit the same sequences of actions, even if they
do so at radically different speeds. This simplifies the treatment of speed-
independent systems, while it is not adequate for real-time systems, whose
correctness depends crucially on the actual times at which actions are per-
formed. Many communication protocols and control circuits are examples
of such systems.

Our goal is to refine the linear model to incorporate time, and to gener-
alize the corresponding specification and verification methodology to enable
the analysis of real-time systems.

For this purpose, we introduce a new process that represents a global,
discrete clock:

tick o
This clock process performs the action tick ad infinitum.

By adding the clock process to our resource allocation example, we ob-
tain, as behaviors of the system, infinite sequences of interleaved actions

of three processes — the allocator, the client, and the clock. This refined
model allows us to put constraints on the times at which the actions of the
original two processes happen.

For instance, a real-time resource allocator may be required to grant
the resource, provided it is available, at most 2 time units after it is re-
quested. Although, strictly speaking, we cannot specify this property within
our model if we assume that actions take place in real (continuous) time,
we can approximate it by requiring that between every request and corre-
sponding grant of the resource there are at most 2 clock ticks. This real-time
requirement constrains the set of admissible behaviors of the resource allo-
cator, by ruling out behaviors such as

request tick tick tick grant use tick release ...
request tick wait tick tick wait tick grant...

Thus we may view real-time requirements as finitary fairness requirements,
which restrict the number of possible behaviors of a system.

Instead of adding the clock process explicitly to every system, we will
define the notion of a timed behavior by associating times with the states
of a behavior. The time of each state in a behavior is a natural number;
it records the number of clock ticks that have happened until the state is
reached. Thus, the time difference between two successive states may be
0, indicating that both states occur, in the given order, between successive
clock ticks. All we require is fairness with respect to the clock process; that
is, any possible behavior of a system contains infinitely many tick transitions.

In the following, we first develop the notion of a real-time transition
system as a set of timed behaviors. To specify properties of such systems we
use an extension of linear temporal logic by bounded temporal operators.
Then we introduce proof rules for the verification of real-time properties
with respect to a given system.

We present two very different verification styles to establish real-time
properties. The first style resembles the proof-lattice technique used to show
liveness properties of reactive systems; it uses a small set of basic rules and
does not refer to the global clock explicitly. The second ("explicit-clock")
proof style exploits the observation that when given access to the clock,
every real-time property can be reformulated as a safety property; it uses
the standard (timeless) temporal rules for establishing safety properties and
relies heavily on invariances that include assertions about the global time.

2 Computational Model

We define the semantics of a shared-variables real-time system as a set of
timed behaviors. This is done in two steps: first, we associate with any

concrete shared-variables system an underlying abstract real-time transition
system; secondly, we identify the possible timed behaviors (computations)

of any real-time transition system. The latter step is presented first.

2.1 Abstract model: Real-time transition system

The basic computational model we use is that of a transition system ([MP89]),
which we generalize by adding real-time requirements. We classify the
real-time requirements into two categories: lower- and upper-bound require-
ments. They assure that transitions are taken neither too early nor too late,

respectively.
A real-time transition system S = (V,S,0,T,£,W) consists of the fol-

lowing components:

• a finite set V of variables.

• a set E of states. Every state cr £ E is an interpretation of V; that is,
it assigns to every variable u £ V a value <T(K) in its domain.

• a set 0 C E of initial states.

• a finite set T of transitions, including the empty transition TB and the

idle transition 77.

Every transition T £ T is a binary accessibility relation on E; that is,
it defines for every state o £ E a (possibly empty) set of r-successors
T(O-) C E. We say that r is enabled on a iff r{a) ^ 0; a set T of
transitions is enabled on cr iff some transition in T is enabled on a.

The empty transition T0 = 0 is not enabled on any state; the idle

(stutter) transition
T/ = {(or,<r): <r<EE}

is enabled on every state.

• a finite set £ of lower-bound requirements. Every lower-bound require-
ment {T,T,1) £ £ for the transition r € T contains, in addition to
r ^ TJ, a set T C T of trigger transitions and a lower bound !6 N.

• a finite set U of upper-bound requirements. Every upper-bound re-
quirement (T,U) e U for the transition r G T contains, in addition to
T ^ TJ, an upper bound u G N°°.3

A timed state sequence p = (cr, T) consists of an infinite sequence cr of
states Oi G £, i > 0, and an infinite sequence T of corresponding times
T; G IM, i > 0, that satisfy the following conditions:

• [Initiality] T0 = 0; that is, the time of the initial state is 0.

• [Bounded monotonicity] For all i > 0,

either T;+i = T;,
or Tj+i = T,- + 1 and <ri+1 = <7;;

that is, the time never decreases. It may increase, by at most 1, only
between two consecutive states that are identical. The case that the
time stays the same between two identical states is referred to as a
stuttering step; the case that the time increases is called a clock tick.

• [Progress] For all i > 0 there is some j > i such that Tj < T,-; that is,
the time never stagnates. Thus there are infinitely many clock ticks.

The timed state sequence p - (ff,T) is a computation (run) of the real-
time transition system S = (V,E,Q,T,C,U) iff it satisfies the following
properties:

• [Initiality] <TQ € 0.

• [Consecution] For all * > 0 there is a transition r G 1 such that
&i+i £ T(cri)- We say that r is taken at position i and completed at
position i + 1; a set T of transitions is taken (completed) at position
j iff some transition in T is taken (completed) at j.

The empty transition T© is assumed to be completed at position 0. At
both stuttering steps and clock ticks, the idle transition rj may be
taken.

• [Lower bound] Let a transition r e T be ready at position i iff, for
every lower-bound requirement {r,T,l) G C, there is no position j,
0 < j < i, such that Tj < Tj + / and T is completed at ;. It follows

3Let N°c = Nu {<»}• For notational convenience, we assume that m < n + oo for all
m,n € N.

that whenever a trigger transition from T is completed, r is not ready
for / time units.

The timed state sequence p satisfies the lower-bound property iff, for

all T e T and i > 0,

if T is taken at position i,
then r is ready at i;

that is, a transition can be taken only when it is ready (and enabled).

• [Upper bound] For every upper-bound requirement (r,u) £ U and all
i > 0, there is some position j > i with Tj < Tj + u such that

either r is not ready at j,
or T is not enabled on (TJ,

or T is taken at j;

that is, the transition r cannot be continuously ready and enabled for
u time units without being taken.

The set of computations of the system S is closed under stuttering:
the addition or deletion of finitely many stuttering steps to a. timed state
sequence preserves the property of being a computation of 5. We consider,
however, all computations of S to be infinite; finite (terminating as well as
deadlocking) computations can be represented by infinite extensions that
add only clock ticks.

Also observe that while lower-bound requirements of the form (r,T,0)
can be discarded without changing the computations of 5, upper-bound
requirements of the form (T, OO) add to 5 weak-fairness assumptions (in the
sense of [MP89]).

2.2 Concrete model: Shared variables

The concrete real-time systems we consider consist of a fixed number of
sequential programs that are executed in parallel, on separate processors,
and communicate through a shared memory.

A shared-variables multiprocessing system P has the form

{B}[Pl\\:.\\Pm).

Each process Pi, 1 < i < m, is a sequential nondeterministic real-time
program over the finite set Ui of private (local) data variables, and the finite

set U„ of shared data variables. The formula 6, called the data precondition
of P, restricts the initial values of the variables in U = Ut U (Ji<i<m ^»-

The real-time programs Pi can be alternatively presented in a textual
programming language, or as transition diagrams. We shall use the latter,
graphical, representation.

A transition diagram for the process Pi is a finite directed graph whose
vertices X1 = {V0,... ?n.} are called locations; ?Q is considered to be the entry
location:

<D
The intended meaning of the entry location is that the control of the process
Pi starts at the location 4 at time 0 (i.e., before the first clock tick).

Each edge in the graph is labeled by a guarded instruction, an initial
delay / € N and, optionally, a delay increment u £ N°°:

© 'T+V ®
where c is a boolean expression, x a variable, and e an expression (the
guard true and the initial delay 0 are usually suppressed; the instruction
c —* x := x is often abbreviated to c?).

We say that the process Pi is ready to proceed from the location tj to the
location £j. iff its control has resided at tj for at least I time units (i.e., clock
ticks). The intended operational meaning of the given edge is that whenever
the process P; is ready to proceed from Q to lk and the guard c is true, then
Pi may proceed to lk. The delay increment u ensures that whenever the
process Pi has been ready to proceed from /*• to ll

k for u time units during
which the guard c has been continuously true, then Pi must proceed to lk.
In doing so, the control of Pi moves to the location ll

k "instantaneously,"
and the current value of e is assigned to x.

In other words, the execution of the given edge is first delayed for at least
/ time units, after which the guard c is repeatedly checked at least every u
time units, until it is found to be true.

In general, a process may have been ready to proceed via several edges all
of whose guards have been continuously true for their corresponding delay
increments. In this case, any such edge is chosen nondeterministically.

We require that each cycle in a transition diagram contains an edge that
is labeled either with a positive (nonzero) initial delay or a positive delay

increment. This is because cycles that consume no time may prevent the
time from progressing.

To demonstrate the scope of this model, we show how the typical real-
time application of a timeout situation can be represented. Consider the
process P with the following transition diagram:

When at the location £0, the process P attempts to proceed to the location
£i for 10 time units, by checking the value of x at least once every time unit.
If the value of x is different from 0 at least once every time unit, then P
may not succeed and has to proceed to the alternative location li at time
10 (note that the delay increment 0 ensures that the vacuous guard true is
indeed checked after the initial delay of 10 time units).

This operational view of the concrete model can be captured by a simple
translation. With the given shared-variables multiprocessing system P, we
associate the following real-time transition system Sp — {V, E, ®,T, £,U):

• V = U U {TTI, . ..itm}. Each control variable 7r;, 1 < i < m, ranges over
the locations L{ of the corresponding process P;.

• E contains all interpretations of V.

• 0 = {a- G E : a- |= 6, and ©■(*;) = 4 for all 1 < t < m}.

• T contains, in addition to T0 and TJ, a transition rE for every edge
E in the transition diagrams for Px,... Pm. If £ connects the source
location t) to the target location l{ and is labeled by the instruction
c —► x := e, then a' G TE(O-) iff

• cr(7ri) = I) and cr'(7ri) = l{,
• a |= c and o-'(x) = <r(e), and
• a'(y) = er{y) for all y G V - {7r;,a:}.

If T£ is uniquely determined by its source and target locations, we
often write rl^k.

By Pred(Tß) we denote the set of syntactic-predecessor transitions
of TE; that is, all transitions Tg» such that the target location of E'
coincides with the source location of E. If the source location of E is
an entry location, then Pred(Tß) = {H}-

• C contains a lower-bound requirement (T#, Pred(Tß),1) for every edge
E labeled by the initial delay I.

• U contains an upper-bound requirement (TE,U) for every edge E la-
beled by the delay increment u.

This translation defines the set of possible computations of the concrete
system P as a set of timed state sequences.

We remark that the translation is conservative over the untimed case.
Suppose that the system P contains no delay labels (recall that, in this case,
all initial delays are 0). Then the state components of the computations of
Sp are precisely all the legal execution sequences of P, as defined in the
interleaving model of concurrency ([MP89]).

If the delay increment oo is added to all edges of P, progress is guaranteed
for every individual transition and, thus, for every process: no transition can
be continuously enabled (and ready) without being taken. In this case, the
computations of Sp correspond precisely to the execution sequences of P
that are weakly fair with respect to every transition.

3 Specification Language

Having settled on our computational model, we need a sufficiently expres-
sive language that is interpreted over timed state sequences in order to
specify real-time systems. We distinguish between state formulas, which as-
sert properties of individual states of a computation, and temporal formulas,
which assert properties of entire computations.

3.1 State formulas

Given a real-time transition system 5 = {V, £,0,T,£,W), we assume a
first-order language with equality that contains interpreted function and
predicate symbols to express operations and relations on the domains of the
variables in V. Formulas of this language are interpreted over the states in
E, and called state formulas. If the state formula p is true in state a, we say
that a is a p-state.

10

We use the following abbreviations for state formulas:

• The starting condition start holds precisely in the initial states 0.

• For any transition r £ T and state formulas p and q, the verification
condition {P}T{<7} asserts that if p is true of a state a £ S, then q
is true of all -r-successors of a. For any set T C T of transitions, we
write {p}T{q} for the conjunction /\r£T ({p}r{?}J of all individual
verification conditions.

Note that the special cases {p}r0{q} and {p}r/{g} are equivalent to
true and p —» q, respectively.

• For any transition r € T, the conditions enabled(r), ready(r), and
completed(r) assert that r is enabled, ready, and completed, respec-
tively. For any set T C T of transitions, we write completed(T) for
the disjunction VTeT completed[r).

Note that enabled^) and enabled^) are equivalent to false and true,
respectively.

For the case that the real-time transition system 5 is associated with a
shared-variables multiprocessing system P, it is easy to see that the starting
condition, verification conditions, and enabling conditions can indeed be
expressed by state formulas.

Suppose that P consists of m processes Pi, 1 < i < m. Let at(Vj) stand
for 7Tj = ly, that is, the control of the process Pi is at the location t-. If 6 is
the data precondition of P, then the starting condition start is equivalent
to the state formula

6 A (f\ at(C0)) A completed^).
l<t<m

Let r G T be a transition of 5, and E the corresponding edge in the
transition diagram for P; assume that E connects the location tj to the
location l\ and is labeled by the instruction c -* x := e. Then, the
enabling condition en.a6Zed(r) is equivalent to the state formula

at{t)) A c,

and the verification condition {p}r{g} is equivalent to

/ p A ready(r) A enabled(r) A a<(^)' A completed^)' A \ ,

11

where q' is obtained from q by replacing every variable with its primed
version (for example, at(tk)' stands for TT- = £l

k).
The reader may guess, correctly, that the two conditions ready(r) and

completed^) can, in general, not be expressed by state formulas of S, be-
cause their truth values in a state a of a timed state sequence depend on
the transitions preceding er. This is the case even if the real-time transi-
tion system S originates from a shared-variables multiprocessing system. In
Section 5, we will show how the notion of state can be extended, by en-
coding information about past transitions, to allow for the definition of the
conditions Teady(r) and completed^) as state formulas.

In the following it suffices, however, to view both abbreviations ready(r)
and completed(T), for any transition r € T, as primitive, nonrigid, proposi-
tions that satisfy certain axioms (the truth value of a nonrigid, or flexible,
proposition is evaluated at a position of a timed state sequence; it may dif-
fer at two positions i and j of a sequence p = (<x,T) even if en = a, and
Ti = T,-).

The axiom COMP asserts that, at any position of a timed state se-
quence, precisely one transition has been completed:

ffi completed(r)

(read the connective © as exclusive-or). The axiom schema READY-INV
states that the condition ready(r) is preserved by all transitions that do not
trigger a lower-bound requirement for r:

(ready(r) A completed(f)') -> ready(T)'

if f £ T for all (r,T,l) € £ (as with variables, we introduce a primed
version for every proposition). These axioms turn out to be sufficient for
our purpose.

Thus, whenever we speak of state formulas, we shall admit the proposi-
tions ready(r) and completed(r) (formally meaning extended-state formulas
in the sense of Section 5). In particular, we will never talk about the truth
value of a state formula with respect to a particular state, but only with
respect to a particular position within a timed state sequence. For instance,
we may say that the i-th state C{ of the timed state sequence p = (<r, T) is
a reacfy(r)-state, meaning that the transition r is ready at position i of p.

12

3.2 Temporal formulas

Temporal formulas are constructed from state formulas by boolean connec-
tives and bounded temporal operators; they are interpreted over timed state
sequences. In this paper, we are mostly interested in proving two important
classes of real-time properties — bounded-response and bounded-invariance
properties. Thus we restrict ourselves to three kinds of temporal formulas.

• A bounded-response property asserts that something will happen within
a certain amount of time. A typical application of bounded response
is to state an upper bound u on the termination of a system 5: if
started at time 0, then S is guaranteed to reach a final state no later
than at time u.

Formally, we express bounded-response properties by temporal formu-
las of the form

p => 0<uq,

for state formulas p and q and u £ IM. The formula p => 0<u q is true
over the timed state sequence p = (c,T) iff, for all i > 0,

if Ui is a /estate,
then there is some g-state aj, j > i, such that Tj < T; + u;

that is, every p-state is followed by a g-state within time u.

• A bounded-invariance property asserts that something will hold con-
tinuously for a certain amount of time; it is often used to specify that
something will not happen for a certain amount of time. A typical
application of bounded invariance is to state a lower bound I on the
termination of a system S: if started at time 0, then 5 will not reach
a final state before time /.

Formally, we express bounded-invariance properties by temporal for-
mulas of the form

P => n<lQ,

for state formulas p and q and / G l\l. The formula p => □<; q is true
over the timed state sequence p = (<r,T) iff, for all i > 0 and j > i,

if a is a p-state and Tj < Ti + I,
then o-j is a g-state;

that is, no p-state is followed by a -.g-state within time less than I.

13

• To prove bounded-invariance properties, we sometimes need to be able
to express a stronger assertion than bounded invariance, that a p-state
can be followed by a -ig-state only if two conditions are met: the time
difference is at least /, and there is an intermediate r-state. This
bounded-unless property is expressed by the temporal formula

p =► qV>ir,

for state formulasp, q, and r, and Z e N; it is true over the timed state
sequence p = (c,T) iff, for all i > 0,

if (Ti is a p-state,
then either all subsequent Cj, j > i, are g-states,
or there is some r-state o-j, j > i, such that lj > T; + Z and

all intermediate <Tk, i < k < j, are g-states;

that is, every p-state is followed by a (possibly infinite) sequence of
g-states until there is an r-state, which cannot be closer than time I.

It is not hard to see that the bounded-invariance formula p => 0<t q
is equivalent to the bounded-unless formula p => q U>; (-'?)•

While temporal-logic aficionados will readily recognize the three classes
of formulas we have introduced as time-bounded versions of conventional,
composite, invariance, response, and unless formulas ([MP89]), for our pur-
pose it suffices to consider them primitive (for a general addition of time-
bounded operators to linear temporal logic, see [AH90]).

We say that a temporal formula is S-valid iff it is true over all compu-
tations of the real-time transition system 5; for state formulas we do not
distinguish between 5-validity and (general) validity (i.e., truth under ev-
ery interpretation). A proof rule is called S-sound iff the 5-validity of all
premises implies the 5-validity of the conclusion.

Any 5-sound rule can be used for verifying properties of the system 5.
Consider the following bounded-invariance rule BD-INV, which allows us
to conclude the bounded-invariance formula p => ö<j q from the bounded-
unless formula p => q U>j r, for any state formulas p, q, and r:

BD-INV p =► q\J>ir

P =► D<i9

It is not hard to convince ourselves that this rule is S-sound for every real-
time transition system S.

14

4 Verification rules

We show how to prove that a given deterministic real-time transition system
5 = (V,T,,®,T,C,U) satisfies its specification. In particular, we present
a deductive system to establish the 5-validity of bounded-invariance and
bounded-response properties. The proof rules fall into four categories: the
single-step rules derive real-time properties that follow from a single real-
time requirement, while the transitivity, disjunction, and induction rules
combine real-time properties into more complicated ones.

4.1 Single-step rules

First, we present basic single-step rules, which establish bounded-invariance
and bounded-response properties that are enforced by a single lower-bound
or upper-bound requirement, respectively.

The single-step lower-bound rule, SS-LB, uses a lower-bound require-
ment (T,T,1) G C:

SS-LB (1) p-y completed(T)
(2) p-xp
(3) MT-rM
(4) ip-* q

V<iq

By T-r we denote the set difference T- {r}. The state formula <p is called
the invariant of the rule.

We point out that the rule SS-LB derives a temporal (bounded-invariance)
formula from premises all of which are state formulas. Note that the premise
(3) is always valid for the empty transition r^ and the idle transition TJ. This
is because r$ is never enabled, and TJ preserves every invariant.

To see that the rule SS-LB is 5-sound, suppose that the premises (1)
through (4) are valid, and consider an arbitrary computation of 5 containing
a p-state c-;. By premise (1), some trigger transition from T is completed
at position i; thus T cannot be taken at any position j > i within time less
than I. From the premises (2) and (3) it follows that <p holds at C{ and all
subsequent states until the transition T is taken; hence tp holds in particular
at all states within time less than I. Since tp implies q by premise (4), the
given conclusion follows.

15

To demonstrate a typical application of the single-step lower-bound rule,
consider the single-process system P with the data precondition x = 0 and
the following transition diagram:

{x = 0} 0?
2 + 1-

The process P confirms that x = 0 and proceeds to the location £-y. Because
of the initial delay 2 of the transition T0-I, the final location l\ cannot be
reached before time 2. Since the transition T0_I has to be attempted at
most 1 time unit after the initial delay, and x is guaranteed to be 0 at this
point, the final location t\ must be reached by time 3.

Let us carry out a formal proof of this analysis. First we show the
bounded-invariance property

start => D<2 -iaf(^i);

that is, the final location £i cannot be reached before time 2. Since Sp
contains the lower-bound requirement (r0—i,{rq>},2), by SS-LB it suffices
to show the premises (let the invariant tp be at(£0))

(1) start —> completed^),

(2) start —y at(lo),

(4) at(lo) -* ->a*(*i),

all of which are trivially valid.
The single-step upper-bound rule, SS-UB, uses an upper-bound require-

ment (r,u) £ U:

SS-UB (1) p -» (pvj)

(2) ip —> ready(r)

(3) tp —> enabled{r)

(4) {<p}T-T{ipVq}

(5) {<p}T{q}
p => 0<u?

This rule derives a temporal bounded-response formula from premises all of
which are state formulas. The state formula ip is called the invariant of the
rule. The premise (4) is always valid for the empty transition T8 and the
idle transition TJ.

16

To see that the rule SS-UB is S-sound, suppose that the premises (1)
through (5) are valid, and consider an arbitrary computation of 5 containing
a p-state 0{. From the premises (1), (4), and (5) it follows that <p holds at
U{ and all subsequent states until a g-state is reached. Hence, the premises
(2) and (3) imply that r is continuously ready and enabled until a g-state is
reached. Thus either a g-state is reached within time u, or the transition r
is taken within time u, which by premise (5) results again in a g-state within
time u. The desired conclusion follows.

Consider again the single-process system P from above; we show the
bounded-response property

(ready-at(T0^i) A x = 0) => 0<i at(£i), (f)

where the abbreviation ready-at(rj_>k) stands for the state formula

at(lj) A ready(Tj^k).

Since Sp contains the upper-bound requirement (r0_i,l), by SS-UB it
suffices to show the premises (let the invariant tp be p)

(2) (ready-af(T0_i) A x = 0) -> ready(r0->i),
(3) (ready-at(T0_i) A x = 0) —> enabled(r0—i),
(5) {ready-at(T0^x) A x = 0} TO_I {ai(^)},

all of which are easily derived.
Bounded-response properties about the readiness of transitions follow

from lower-bound requirements. Suppose that (r,T,l) G C is the only lower-
bound requirement for the transition r; then:

READY (1) p-*q

(2) V => D<1°
(3) q —♦ -ienabled(T)

p => 0<; (g A ready(r))

The premises (1) and (3) are state formulas; the premise (2) can be estab-
lished using the single-step lower-bound rule.

To see that the rule READY is 5-sound, suppose that the premises
(1) through (3) are S-valid, and consider an arbitrary computation of 5
containing a p-state CT{. From the premises it follows that q holds and no
trigger transition from T is enabled, and hence taken, at Oi and all sub-
sequent states within time less than I. Thus r becomes ready by the first

17

State (Tj with j > i that is not within time less than / of &{. If/ = 0, then
a-j = Oi is a g-state by premise (1). Otherwise, a clock tick is completed at
position j, in which case a-j is identical to its predecessor, and thus a g-state
by premise (2).

In our example, (TO-I,{T0},2) is the only lower-bound requirement for
the transition T0—I. Therefore we can use the rule READY to establish

start => 0<2 {ready-at(T0->i) A x = 0) (J)

from the premises

(1) start -* (at(io) A x = 0),
(2) start =*• D<2 {at(l0) A x = 0),
(3) at(4) -+ ->enabled(Tq,).

The state formulas (1) and (3) are trivially valid; the bounded-invariance
formula (2) can be derived by the single-step lower-bound rule SS-LB, using
the lower-bound requirement (T0_I, {r0},2) and the invariant at(l0)/\x = 0.

Next, we present a rule that allows us to prove bounded-response prop-
erties that result from combining a finite number of successive bounded-
response properties — the transitive upper-bound rule:

TRANS-UB (1) P^O<Ulr
(2) r =► 0<U2 q

P=> 0<Ul+U2g

It is not hard to see that this rule is 5-sound for every real-time transition
system S.

In our example, we use the transitive upper-bound rule TRANS-UB
to combine the two properties (f) and (|). Thus we conclude, at last, the
bounded-response property that the final location t\ is reached by time 3:

start =$> 0<3ei(/i).

4.2 Multiple processes

So far we have only examined a single-process example. In general, several
processes that communicate through shared variables interfere with each
other.

Consider the two-process system with the data precondition x = 1 and
the following transition diagrams:

18

Pi:

{x = l}

= 0?
2 + 1"

x := 0
1 + 0" ■©

The first process, Px, is identical to our previous example; after an initial
delay of 2 time units, it confirms that x = 0 and proceeds to location l\.
However, this time the value of x is not 0 from the very beginning, but set
to 0 by the second process, P2, only at time 1 (note that due to the initial
delay 1 and the delay increment 0, the value of x is set to 0 exactly at time
1). Since Px does not check the value of x before time 2, it is guaranteed to
find the value of x to be 0. Thus, Px reaches its final location l\ again at
the earliest at time 2 and at the latest at time 3.

Let us conduct a formal proof. First we show the bounded-invariance
property

start => □<2-iat(^1);

that is, Pi does not terminate before time 2. The proof proceeds as in
the case of a single process, using the single-step lower-bound rule SS-LB
and the lower-bound requirement (TQ^J, {T©},2) (take the invariant at(il)).
Since the new process P2 contributes the transition r^, we have to estab-
lish an additional noninterference premise,

(3) {at(ll)} T0
2
^ {at(ll)},

which is easily derived.
To prove the corresponding upper bound on termination in the two-

process case, we need a stronger rule than the transitive upper-bound rule
TRANS-UB. The rule OVERLAP allows us to prove bounded-response
properties that result from combining a finite number of parallel (overlap-
ping) bounded-response properties:

OVERLAP (1) P => <><U! T

(2) p => 0<U2 S

(3) {r}T{r\l q}
(4) {s}T{sVq}
(5) (r As) => 0<U3 q

P ^ <^><max(ui,U2)+U3 9

19

Note that the premises (3) and (4) are always S-valid for the empty transi-
tion Tg and the idle transition r/.

To see that the rule OVERLAP is 5-sound, suppose that the premises
(1) through (5) are S-valid, and consider an arbitrary computation of 5
containing a p-state <7;. By the premises (1) and (2), &i is followed by an
r-state (Tj within time Hi, and an «-state ak within time u2. Without loss
of generality we assume that j < k. Because of the premise (3), either there
is a g-state within time u2, thus implying the desired conclusion, or both
r and s hold at <7fc. In the latter case, it follows from the premise (5) that
there is a g-state within time u2 + u3, which again implies the conclusion of
the rule.

In our example, we use the rule OVERLAP to establish the bounded-
response property that Pi terminates within 3 time units:

start => 0<3at(l\).

It suffices to show the premises

(1) start => 0<2 ready-at{rl^x),
(2) start => 0<i(z = 0),
(3) {ready-atir^)} r^ {at{£\)},
(3') {ready-at{rl^x)} T^ {ready-atfä^)},
(4) {x = 0} r0U {at(l\)},
(4') {x = 0} r^ {x = 0},
(5) (ready-atir^) Ai = 0) => 0<i at(£\).

The premise (1) can be derived by the rule READY similarly to the cor-
responding property (f) in the case of a single process. The premise (5)
is identical to the property (f), only that the proof of the necessary new
noninterference conditions requires the axiom READY-INV, as does the
proof of the noninterference premise (3')- The noninterference premises (3),
(4), and (4') are trivially valid.

The essential difference between the single-process and the present sys-
tem is manifested by the premise (2): while the precondition of the former
already includes x — 0, in the current system x — 0 is established, "in time,"
by the second process P2. We show the premise (2) by an application of the
transitive upper-bound rule TRANS-UB to the properties

(2.1) start => 0<i ready-at(T$_>x),
(2.1) ready-at^^) => O<0(x = 0).

20

The first condition, property (2.1), is shown by single-step reasoning using
the rules READY and SS-LB with respect to the lower-bound requirement
(To-i'-fo}'1); the second condition, (2.2), can be established by the rule
SS-UB, employing the upper-bound requirement (rj_a,0).

In the example we just considered, the transition TQ_tl becomes enabled,
with the help of the process P2, before it is ready. Now let us turn this
situation around, and have r^ be ready before it is enabled by P2:

{»=1}

(The data precondition is again x = 1.)
In this new system, the second process P2 sets x to 0 only at time 5, after

process 1 has checked the value of x at least twice. Since the first process Pi
keeps testing whether x = 0 at least every time unit, it will reach its final
location either at time 5 or at time 6.

The formal proof of the bounded-invariance property

start =$■ D<5 -iat(l\),

that Pi does not terminate before time 5, uses again the the single-step
lower-bound rule SS-LB; however, this time the crucial lower-bound re-
quirement is the one for r(^_fl, namely (T^, {rc},5). We need to show the
premises

(1) start —► completed^),
(2) start -> (at{ll) A x = 1),
(3) {at{f0) A x = 1} To^i {at{ll) A x = 1},
(4) (at(ll) A x = 1) - -iat(i{),

all of which can be concluded easily.
The corresponding bounded-response property that Pi terminates within

6 time units:
start => 0<6 at(l\),

can be inferred by the rule OVERLAP just as in the previous example.
All of the premises

21

(1) start => 0<2 ready-atfö^),
(2) start => 0<5(a: = 0),
(3) {ready-atir^)} r^ {at(£\)},
(3') {ready-atfö^)} r^ {ready-■at(r%_1)},
(4) {x = 0} r^ {at(£\)},
(4') {* = 0} r^ {* = 0},
(5) (ready-a^To1.,!) A x - 0) => 0<i a*(*J)

can be derived as before.

4.3 Transitivity rules

After having looked at the parallel composition of transitions, we illustrate
how to prove bounded-invariance and bounded-response properties of a chain
of sequentially composed transitions. We use two transitivity rules to com-
bine a finite number of nonoverlapping real-time properties.

The transitive upper-bound rule TRANS-UB has been given above;
the transitive lower-bound rule TRANS-LB combines two bounded-unless
properties:

TRANS-LB (1) p => q ü>h r
(2) r^q\J>hs

P=> qU>h+l2
s

This rule is easily seen to be 5-sound for every real-time transition system
5.

Recall that from the conclusion of this rule we can infer the bounded-
invariance property

P=>n<h+h<l

by an application of the bounded-invariance rule BD-INV. We shall often
neglect to mention this simple proof step explicitly.

To establish the premises of the rule TRANS-LB, we need to strengthen
the single-step lower-bound rule SS-LB to infer a bounded-unless property.
For any lower-bound requirement (r,T,l) € L:

11

SS-LBU (1)

(2)
(3)
(4)
(5)

p —> completed(T)

{tp}T-r{<p}

p => q\J>ir

To see that the new, stronger, single-step lower-bound rule SS-LBU is
5-sound, simply observe that we have added the premise (5) to the original
rule SS-LB. This additional condition guarantees that the invariant ip —
as well as q, due to the premise (4) — holds until an r-state is encountered
(if ever). Thus the original rule SS-LB covers the special case in which the
state formula r is chosen to be true.

We demonstrate the application of the transitivity rules by examining
the single-process system P with the following transition diagram:

true"?
2 + 1"

true?
2 + 1"

We want to show that P terminates not before time 4 and not after time 6.
Given a transition diagram containing the location I, let In(l) be the set

of transitions that correspond to incoming edges (i.e., edges whose target
location is I); if I is an entry location, let In(i) = {r0}. In particular,
TJ g In{l) for any location I. We introduce the abbreviation enter(l) to
stand for the state formula

at{l) A completed(In(£)).

For instance, enter(ii) stands, in our example, for at(li) A completed(T0->i)■
Now let us derive the real-time bounds on the termination of P. First,

we prove the lower bound

start => n<4-iaf(£2)-

By the transitive lower-bound rule TRANS-LB (and a tacit application of
BD-INV), it suffices to show the premises

(1) start => {->at{l2))\}>2enter{l1),
(2) enter(Zi) => (-.at(/2))U>2 true.

23

Both of the premises can be established by the single-step lower-bound rule
SS-LBU. To show the premise (1), we use the lower-bound requirement
(TO_I,{T0},2) and the invariant at(l0); the premise (2) follows from the
lower-bound requirement (TI_2, {TO-»I},2) and the invariant at(li).

The corresponding upper bound

start => 0<6 at{t2)

is derived by the transitive upper-bound rule TRANS-UB. It suffices to
show the premises

(1) start =» 0<3 enter(£i),
(2) enter^) =► 0<3 at(£2),

both of which can be established by single-step upper-bound reasoning as
demonstrated in the previous subsections.

A more interesting case involving transitive reasoning can be illustrated
on the following two-process system with the data precondition x = 0:

P, _^g) 1^ <§)

2 + i" vJy 2 + 1

In any analysis of this system, we have to distinguish two cases. The first
process, P1} may reach its final location £\ before the second process, P2,
sets the value of x to 1, or vice versa. In the latter case, Pi has to wait until
P2 resets the value of x to 0. Consequently, Pi may terminate as early as
at time 2 or as late as at time 7.

The lower bound,
start =» n<2sat(l\),

follows by single-step reasoning with respect to the lower-bound requirement

(To-i. {T©}>2)- The uPPer bound'

start => 0<7 at(l\),

is established by the rule OVERLAP. All of the premises

24

(1)
(2)
(3)
(3')
(3")

(4)
(4')
(4")

(5)

start => 0<2 ready-atfä^),
start => 0<6(af(^) A x = 0),
{ready-at(r[^)} r^ {at{t\)},
{ready-atir^)} r^ {ready-at^^)},
{ready-atir^j} r_2 {ready-at^^)},
{at{l\ A x = 0} T,U {at(£\)},
{at(l\) A I = 0} T0

2
W1 {a<(/|) Ai = 0},

jaf(^) A x = 0} r^ {at(/|) A i = 0},
(ready-a^To1^) A at(/2) A x = 0) =» 0<i o<(^),

can be derived by single-step reasoning, except for (2), which follows by
the transitive upper-bound rule TRANS-UB from the single-step upper
bounds

start => 0<zenter(ll)

and
enter(l\) =» 0<3 {at(l\) A x = 0).

4.4 Disjunction rules

The simple transitivity rules are not powerful enough to handle programs
with branching structures that are more complicated than trees; reasoning
about confluent branches requires a case analysis. The disjunctive lower-
bound rule DIS-LB and the disjunctive upper-bound rule DIS-UB provide
the means for combining the parts of a case splitting:

DIS-LB (1)
(2)

Pi => qU>hr

Pi => gU>,27-

(Pi Vp2) =* qU>Tnin{h,h)T

DIS-UB (1)
(2)

pi => o<ui q
Pi => o<U2 q

{Pl Vp2) => 0<mas(ui,u2)9

Both disjunction rules are easily seen to be S-sound for every real-time
transition system S.

For an application of the disjunction rules, consider the process P with
the following transition diagram:

25

We show that P terminates at time 3, independently of the initial value of

x.
Any proof considers two cases: either x is initially 0 and the transition

T0-I is taken, or x is initially different from 0 and the alternative transition

T0_2 is taken. The lower bound,

start =^> D<3 -iat(lz),

follows by the disjunctive lower-bound rule DIS-LB from the premises

(1) (start A x = 0) =*> (^at(l3)) U>3 true,
(2) (start A x ^ 0) => (iaf(4)) U>3 true;

the upper bound,
start =» 0<3 at(£3),

follows by the disjunctive upper-bound rule DIS-UB from the premises

(1) (start A x = 0) => 0<3 enter(li),
(2) (star* Ai/0) =» C><3 enter (*i).

All four of the premises can be established by single-step and transitive
reasoning as demonstrated in the previous subsections.

We remark at this point that our proof system is not strong enough to
show tight bounds on nondeterministic systems. To see this, consider the
following nondeterministic variant P' of the process P:

26

During an execution of P', one (if any) of the two transitions r0_»i and T0-,2

is chosen nondeterministically (in general, a vertex of a transition diagram is
nondeterministic iff any two guards that are associated with outgoing edges
are not disjoint).

To show the lower bound

start => D<3-iai(4)

on the termination of P\ we need to express and prove more complex tem-
poral properties than are permitted in our simple specification language.
For instance, the property that the control of P' resides at the location to
either forever or until, no sooner than at time 2, it proceeds to the location
4 or until, no sooner than at time 1, it proceeds to the location tz, cannot
be stated as a simple bounded-unless formula. On the other hand, in tem-
poral logic with time-bounded operators this property can be expressed by
the formula

start => (at{£0)[)>2 enter fa) V at{£0) U>i enter fafj.

An extension of our specification language to disjunctive properties of this
form and the detailed treatment of nondeterminism is deferred to a separate
paper ([HMP91]).

4.5 Induction rules

To prove lower and upper bounds on the execution time of program loops,
we need to combine a state-dependent number of bounded-invariance or
bounded-response properties. For this purpose we introduce two induction
rules — the inductive lower-bound rule IND-LB and the inductive upper-
bound rule IND-UB.

Assume that the variable i eV ranges over the natural numbers IM; for
any n G N:

By tp(i - 1) we denote the state formula that results from the inductive in-
variant tp(i) by replacing all occurrences of the variable i with the expression
i - 1; the formulas (p(n) and <p(0) are obtained analogously.

27

To see that the rule IND-LB is S-sound, for any system 5, suppose
that the premises (1) through (3) are S-valid, and consider an arbitrary
computation of S containing a p-state <7fcn. Then <p(n) holds at (rkn by
premise (1). From the main premise (2) it follows that either q is true at
(Tk^ and all subsequent states, or there is a sequence of positions kn < An_i <
...< k0 such that each crk., 0 < i < n, is a <p(i)-state and q is true at all
intermediate states <Tj, kn < j < k0; furthermore, the premise (2) implies
that any two positions ki and kj, i # j, in this sequence are at least time I
apart. In either case, the desired conclusion follows.

The inductive upper-bound rule uses again a variable i 6 V that ranges
over the natural numbers N. For any n € N:

IND-UB (1) p -» <p(n)
(2) {<p(i) A i > 0)
(3) y(0) -> g

0<u<p{i-l)

P =» 0<n-uQ

It is not hard to convince ourselves that this rule is 5-sound for every real-
time transition system 5 as well.

We demonstrate the application of the induction rules by analyzing the
single-process system P with the data precondition x = 5 and the following
transition diagram:

x #0 x := x — 1

(1

{• = «) -^-(g) ^-0? @
The process P decrements the value of x until it is 0, at which point P
proceeds to the location li. Since x starts out with the value 5, and each
decrement operation takes at least 2 and at most 3 time units, while the
tests are instantaneous, the final location l\ is reached not before time 10
and not after time 15.

To prove the bounded-invariance property

start => D<1o->of(^i),

we first apply the bounded-invariance rule BD-INV, showing instead

start => (iat(*i))U>io(enter(£o) A a: = 0).

28

By the inductive lower-bound rule IND-LB, it suffices to show the premises

(1) start -> (enter(l0) A x = 5),
(2) (enter(io) A x = i A i > 0) =>

(noi(/i))U>2(eBter(^0)A8 = i-l).

The first premise, (1), is trivially valid; the second premise, (2), follows from
the single-step lower-bound rule SS-LBU with respect to the lower-bound

requirement (TO-»O, {T©, T"O—»O}) 2).
Now let us prove the bounded-response property

start => 0<iSat(li).

Applying the transitive upper-bound rule TRANS-UB, it suffices to show

(1) start => 0<lh {enter(£0) A x = 0),
(2) (enter{l0) A i = 0) => O<0at(/i).

The second premise, (2), can be concluded by single-step upper-bound rea-
soning with respect to the lower-bound requirement (T0_I, {T0,TO—O}>O) and
the upper-bound requirement (TO—1,0); we elaborate only on how the first
premise, (1), can be derived by an application of the inductive upper-bound
rule IND-UB. It suffices to show the premises

(1.1) start —> (enter(l0) A x = 5),
(1.2) {enter(l0) Ax = iAi>0) => 0<3 {enter(lQ) A x = i - 1).

While the condition (1.1) is trivially valid, the main premise, (1.2), fol-
lows by single-step upper-bound reasoning from the lower-bound require-
ment (TO_O,{'''0)TO->O},2) and the upper-bound requirement (T0—O,1)-

The induction rules can be generalized, by letting the bounds I and u
vary as functions of i. We state only the general inductive upper-bound
rule, IND-GUB. For any n £ IM:

IND-GUB (1) p -» <p{n)
(2) {<p{i) A i > 0) => 0<Ui <p{i - 1)
(3) p(0) -> g

P => O<L0<i<nu;9

This general rule is still 5-sound for every real-time transition system S.
The general inductive upper-bound rule is needed to prove upper bounds

for programs with loops whose execution time is state-dependent. Consider
the following process P:

29

odd(x)1 —* x :— x — 1 0" i^O? T even{x)1 —► x := x — 1

{x = S} -^ {lo} y*=f ^

To show that P terminates within 7 time units, we apply the rule IND-
GUB to the inductive invariant enter(£0) Ai = i and let u; be 1 (2) if i is
odd (even, respectively). The main premise,

(enter(£0) A x = i A i > 0) => 0<Ui (enter(l0) A x = i - 1),

follows by the disjunctive upper-bound rule DIS-UB from the two condi-
tions

(enter(£0) Ax = iM>0A odd[i)) => 0<i (enter(l0) A x = i - 1)

and

(enter(^o) A x = i A i > 0 A et;en(z)) ^> 0<2 (en«er(i0) A x = i - 1).

5 Explicit-Clock Reasoning

Consider a real-time transition system 5 = (V,S, 0,T, £,W). The condi-
tions ready(r) and completed(r) can be expressed by state formulas only
if every state of S is situated in a computation and contains information
about the history of the computation. To add this information, we define
the extension of S by adding a clock variable whose value represents, in
every state of a computation, the corresponding time.

We then proceed to show how this explicit access to the current time
through the clock variable can be utilized by a real-time verification tech-
nique that differs substantially from the one presented in the previous sec-
tion, in that it relies only on one simple inference rule.

5.1 Extended real-time transition systems

Let us introduce the following new variables:

• The clock variable t ranges over the natural numbers l\l; it records, in
every state cr,- of a computation p = (c,T), the corresponding time T;.

30

• The transition variable A ranges over the transition set 7"; it records,
in every state of a computation, which transition has been completed
in the preceding step.

• The minimal-delay counters 6T, r G T, range over N; they record,
in every state of a computation, how many clock ticks must happen
before the transition r becomes ready.

• The maximal-delay counters AT, r G T, range over l\l°°; they record,
in every state of a computation, how many clock ticks may happen
before the transition r must be taken provided that it is continuously
ready and enabled.

First-order formulas over this extended vocabulary are called extended-
state formulas. The conditions ready(r) and completed(r) are obviously
equivalent to the extended-state formulas 6T = 0 and A = T, respectively.

The extension 5* = (V",E",0",T",£">W) of S is denned to be the
following real-time transition system:

• r = yu{t,A}U{^:T6T}u{AT:TG 7*}.

• XT contains all interpretations of V".

• Let 1{T,T) be the maximal I such that {r,T,l) € C and f e T; if no
such lower-bound requirement exists, let l(r, f) = 0. Furthermore, let
u(r) be the minimal u such that (T, U) £ U\ U(T) = oo if no such
upper-bound requirement exists.

0*" contains all extensions a" of interpretations cr € 0 such that, for
all r er,

<r-(t) = 0,
O-'(A) = T0,

<7-(6T) = Z(T,7fe),

<7-(AT) = u(r).

• T" contains, for every r £ T, a transition r" such that (o^,^) € T"

iff, for all r' G T,

(*1.*2) €T,

ffl"(«r) = 0 =

^(A) = T,

31

c-2 (£T.) = rnax(l(T',r),a^(ST>)),

»/A \ - / °i(^r') ^r' *s enabled on <r2 and CT^^') = 0
2\ r'J — S u(r') otherwise.

Note that the second clause, (rl(8T) = 0, enforces all lower bounds.

In addition, T" contains the tick transition rj such that (er^cr^) £ TJ

iff, for all r' £ T,

(?\ = <r2,

<r£(t) = ^(t) + 1,

°2(^r') = max(Otcr^(STi) - 1),
J o-j(AT/) - 1 if T' is enabled on <Ti and <xj(&r') = 0

2V r') — S U(T') otherwise,

cr'2(AT,) > 0.4

The last clause enforces all finite upper bounds.

• C" = %.

• U~ contains (r", oo) for all (r, oo) G li. These remaining upper-bound
requirements are weak-fairness conditions that enforce all infinite up-
per bounds.

The real-time transition system S and its extension S~ are equivalent in
the following sense: for every computation p = (<r, T) of 5, there is a com-
putation p' = (<T",T) of S' such that every state a\, i > 0, is an extension
of a-i to V" (and <rt"(t) = T; for all i > 0); and for every computation (a',T)
of 5", the timed state sequence (<r,T) is a computation of 5 if every state
°"i) I > 0, is the restriction of <rt* to V.

Thus, to show a temporal formula <j> (over V) to be S-valid, it suffices
to show the 5"-validity of <f>.

5.2 Explicit-clock verification

We point out that, once we are given explicit access to the global clock
through the clock variable t, both bounded-invariance and bounded-response
properties over V can alternatively be formulated as (unbounded) unless
properties over V".

4In evaluating expressions, let oo — 1 = oo > 0.

32

Unless properties assert that something will hold continuously either

forever, or until terminated by the occurrence of another event. They are

expressed by temporal formulas of the form

p => q U r,

for state formulas p, g, and r. The formula p => q U r is true over the timed

state sequence p — (c,T) iff, for all i > 0,

if 0{ is a p-state,
then either all subsequent CTJ, j > i, are g-states,
or there is some r-state Cj, j > i, such that all intermediate crk,

i < k < j, are g-states;

that is, every p-state is followed by a (possibly infinite) sequence of g-states

until there is an r-state.
In particular, the bounded-invariance property

P => n<iq

is S~-equivalent to the unbounded unless property

(p A t = T) => g U (t > T + /),

(i.e., both formulas are'true over the same computations of 5"), and the

bounded-response property

p => 0<u9

is 5"-equivalent to the unless property

{p A t = T) => (t < T + u) U g

if g is a state formula over V. Both unless formulas make use of the rigid
(static) variable T (i.e., T = T') to record the time of the p-state. Note that
the latter equivalence is based on the fact that the time is guaranteed to

reach and surpass T + u, for any value of T.
These observations lead to an alternative and quite different approach to

the verification of real-time properties: to prove the S-validity of a real-time
property <f> (over V), we establish instead the 5"-vahdity of an S'-equivalent
unless property 4>~ (over V"). This can be done by applying the timeless

unless rule:

33

UNLESS (1) p^(^Vr)
(2) {<p}T'{<pVr}
(3) tp -» q

P q Ur

We emphasize that all premises are state formulas; the state formula <p is
called the intermediate assertion of the rule. It is easy to see that the unless
rule is S*-sound.

To demonstrate this kind of "explicit-clock" real-time reasoning, consider
again the single-process system P with the data precondition x — 0 and the
following transition diagram:

{x = 0} i = 0?
2 + r ■©

Both the lower and the upper bound on the termination of P,

start =► (-ierf(*i))U(t > 2)

and
start => (t < 3)Uat(4),

respectively, can be derived by the unless rule UNLESS. To establish the
lower bound, we use the intermediate assertion

at{£0) A (0 < t < 2) A (t + ST0^ = 2).

The upper bound follows from the intermediate assertion

at{£0) A (x = 0) A (0 < t < 3) A
(0 < 6r0^ < 2) A (0 < AT0-1 < 1) A (t + 6n^ + Aro^1 = 3).

While the verification style presented in Section 4 refers to time only
through time-bounded temporal operators, explicit-clock reasoning uses or-
dinary, timeless, temporal operators and refers to the time in state formulas.
Both styles trade off the complexity of the temporal proof structure against
the complexity of the state invariants: the method of Section 4 relies on
complex proof structures similar to the proof lattices used to establish or-
dinary (timeless) liveness properties ([OL82], [MP89]), and uses relatively
simple invariants; the method of the present section employs only the simple
unless rule — a safety rule —, but requires powerful intermediate assertions.

34

Acknowledgements. We thank Rajeev Alur for many helpful discussions.

Related work. There has been an increasing amount of literature on the
formal analysis of real-time systems in recent years, and as the number of
researchers has proliferated, so has the number of computational models.

We restrict ourselves to pointing to some of the work that builds on the
timing model we have used — that of a global, discrete, and asynchronous
clock: [Os90] uses an explicit clock variable for real-time reasoning, and
includes many interesting applications; [Ko89] introduced the bounded tem-
poral operators we use in our specification language; [Ha88] and [PH88]
contrast the interleaving model with a synchronous model; [DW90] use fi-
nite automata for the specification (and synthesis) of real-time systems.

More theoretical accounts on specification languages for timed state se-
quences can be found in [AH89], [AH90], and [HLP90], all of which in-
clude methods for the automatic verification of /mite-state real-time sys-
tems. [He90] gives a complete deductive system for a propositional real-time
logic.

References

[AH89] R. Alur, T.A. Henzinger, "A really temporal logic," 30th IEEE
FOCS, 1989.

[AH90] R. Alur, T.A. Henzinger, "Real-time logics: complexity and ex-
pressiveness," 5th IEEE LICS, 1990.

[DW90] D.L. Dill, H. Wong-Toi, "Synthesizing processes and schedulers
from temporal specifications", 2nd Workshop on Computer-Aided
Verification, 1990.

[Ha88] E. Harel, Temporal Analysis of Real-time Systems, M.S. Thesis,
Weizmann Institute, 1988.

[He90] TA. Henzinger, "Half-order modal logic: how to prove real-time
properties," 9th ACM PODC, 1990.

[HLP90] E. Harel, 0. Lichtenstein, A. Pnueli, "Explicit-clock temporal
logic," 5th IEEE LICS, 1990.

[HMP91] T.A. Henzinger, Z. Manna, A. Pnueli, "Temporal proof method-
ologies for real-time systems," 18th ACM POPL, 1991.

35

[Ko89] R. Koymans, Specifying Message Passing and Time-critical Sys-
tems with Temporal Logic, Ph.D. Thesis, Eindhoven Univ. of Tech.,

1989.

[LP84] 0. Lichtenstein, A. Pnueli, "Checking that finite-state concur-
rent programs satisfy their linear specification," 11th ACM POPL,
1984.

[MP89] Z. Manna, A. Pnueli, "The anchored version of the temporal frame-
work," Linear Time, Branching Time, and Partial Order in Logics
and Models for Concurrency (J.W. deBakker, W.-P. de Roever,
and G. Rozenberg, eds.), Springer LNCS 354, 1989.

[OL82] S. Owicki, L. Lamport, "Proving liveness properties of concurrent
programs," ACM TOPLAS 4, 1982.

[Os90] J.S. Ostroff, Temporal Logic for Real-time Systems, Research Stud-
ies Press, 1989.

[PH88] A. Pnueli, E. Harel, "Applications of temporal logic to the specifi-
cation of real-time systems," Formal Techniques in Real-time and
Fault-tolerant Systems, Springer LNCS 331, 1988.

[Pn77] A. Pnueli, "The temporal logic of programs," 18th IEEE FOCS,
1977.

36

